
LIS User’s Guide

Submitted under Task Agreement GSFC-CT-2

Cooperative Agreement Notice (CAN) CAN-00OES-01

Increasing Interoperability and Performance of
Grand Challenge Applications in the Earth, Space, Life, and Microgravity

Sciences

September 10, 2004

Revision 3.2

History:
Revision Summary of Changes Date
3.2 Milestone “J” submission September 10, 2004
3.1 Milestone “G” release July 16, 2004
3.0 Milestone “G” submission May 7, 2004
2.3 Improvements to Milestone “I” November 30, 2003
2.2 - -
2.1 Milestone “I” release November 10, 2003
2.0 Milestone “I” submission August 14, 2003
1.1 Milestone “F” release April 25, 2003
1.0 Milestone “F” submission March 31, 2003

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

1

Contents

1 Introduction 4
1.1 What’s New: LIS 3.0 – LIS-ESMF 4
1.2 What’s New: LIS 2.0 – 3.0 . 5

2 Background 6
2.1 LIS . 6
2.2 LIS driver . 6
2.3 Community Land Model (CLM) 7
2.4 The Community Noah Land Surface Model 8
2.5 Variable Infiltration Capacity (VIC) Model 8
2.6 GrADS-DODS Server . 9

3 Preliminaries 10

4 Running Modes 11
4.1 MPI-Based Running Mode . 11
4.2 GDS-Based Running Mode . 11
4.3 Non-parallel Running Mode . 12
4.4 1 km Global Runs . 12

5 Obtaining the Source Code 13
5.1 Downloading the Source Code . 13
5.2 Source files . 14
5.3 Scripts . 15
5.4 Post-processing . 15
5.5 Opendap Scripts . 15

6 Obtaining the Data-sets 17
6.1 Downloading the Data-sets . 17
6.2 Downloading Parameter Data-sets 17

6.2.1 Example: Downloading the 1/4 Deg. Parameter Data-
sets via http . 17

6.2.2 Example: Downloading the 1/4 Deg. Parameter Data-
sets via GDS . 20

6.3 Downloading the Forcing Data-sets 20
6.3.1 Example: Downloading the 1/4 Deg. Forcing Data-sets

via http . 22
6.4 Downloading the Sample Output Data-sets 23

6.4.1 Example: Downloading The Sample 1/4 Deg. Output
Data-sets Via GDS . 23

6.4.2 Viewing The Sample 1/4 Deg. Output Data-sets 25

2

7 Building the Executable 26
7.1 General Build Instructions . 26

7.1.1 Required Software Libraries 26
7.1.2 Modifying the Makefile 27

7.2 Compiling non-parallel running mode 27
7.3 Compiling GrADS-DODS Support 28
7.4 Generating documentation . 28

8 Running The Executable 29
8.1 Configuring Run Via LIS Configuration File 29
8.2 Domain Example . 29
8.3 Running Over The 1 km Domain 34

9 Output Data Processing 35
9.1 CLM Output . 37
9.2 Noah Output . 39
9.3 VIC Output . 42

A LIS Configuration File 44

B Makefile 48

3

1 Introduction

This is the LIS’ User’s Guide. This document describes how to download and
install the code and data needed to run the LIS executable for LIS’ “Interoper-
ability Release” milestone – Milestone “J”. It describes how to build and run the
code, and finally this document also describes how to download output data-
sets to use for validation. Updates to this document will provide more detailed
instructions on how to configure the executable and will address the graphical
user interface.

This document consists of 9 sections, described as follows:

1 Introduction: the section you are currently reading

2 Background: general information about the LIS project

3 Preliminaries: general information, steps, instructions, and definitions
used throughout the rest of this document

4 Running modes: different parallel running modes of operation

5 Obtaining the Source Code: the steps needed to download the source
code

6 Obtaining the Data-sets: the steps needed to download the data-sets

7 Building the Executable: the steps needed to build the LIS executable

8 Running the Executable: the steps needed to prepare and submit a
run, also describes the various run-time configurations

9 Output Data Processing: the steps needed to post-process generated
output for visualization

1.1 What’s New: LIS 3.0 – LIS-ESMF

This is a proto-type version of LIS using the ESMF. This involves:

1. ESMF components – LIS is broken into two ESMF components, LSM and
forcing.

2. ESMF superstructure – An ESMF superstructure manages time and drives
the LSM and forcing components.

3. ESMF states – ESMF states are used to encapsulate data that must be
shared between the LSM and forcing components. These data are ex-
changed be means of a “coupler”.

4. ESMF configuration utility – The LIS cardfile, lis.crd, has been replaced by
lisconfig.sh, a configuration file based on the ESMF configuration utility.

4

1.2 What’s New: LIS 2.0 – 3.0

1. Running Modes – Now there is more than one way to run LIS. In addition
to the standard MPI running mode, there are the GDS running mode and
the 1 km running mode. See Section 4 for more details.

2. Sub-domain Selection – Now you are no longer limited to global simu-
lations. You may choose any sub-set of the global domain to run over.
See Section 8.2 for more details. (This is currently only available for the
MPI-based running mode.)

3. Plug-ins – Now it is easy to add new LSM and forcing data-sets into the
LIS driver. See LIS’ Developer’s Guide for more details.

5

2 Background

This section provides some general information about the LIS project and land
surface modeling.

2.1 LIS

The primary goal of the LIS project is to build a system that is capable of
performing high resolution land surface modeling at high performance using
scalable computing technologies. The LIS software system consists of a number
of components: (1) LIS driver: the core software that integrates the use of land
surface models, data management techniques, and high performance computing.
(2) community land surface models such as CLM [4], Noah [6], and VIC [7], and
(3) Visualization and data management tools such as GrADS [1] -DODS [5]
server. One of the important design goals of LIS is to develop an interoperable
system to interface and interoperate with land surface modeling community and
other earth system models. LIS is designed using an object oriented, component-
based style. The adaptable interfaces in LIS can be used by the developers to
ease the cost of development and foster rapid prototyping and development of
applications. The following sections describe the main components of LIS.

2.2 LIS driver

The core of LIS software system is the LIS driver that controls program exe-
cution. The LIS driver is a model control and input/output system (consisting
of a number of subroutines, modules written in Fortran 90 source code) that
drives multiple offline one-dimensional LSMs. The one-dimensional LSMs such
as CLM and Noah, apply the governing equations of the physical processes of
the soil-vegetation-snowpack medium. These land surface models aim to charac-
terize the transfer of mass, energy, and momentum between a vegetated surface
and the atmosphere. When there are multiple vegetation types inside a grid
box, the grid box is further divided into ”tiles”, with each tile representing a
specific vegetation type within the grid box, in order to simulate sub-grid scale
variability.

The execution of the LIS driver starts with reading in the user specifica-
tions, including the modeling domain, spatial resolution, duration of the run,
etc. Section 8 describes the exhaustive list of parameters specified by the user.
This is followed by the reading and computing of model parameters. The time
loop begins and forcing data is read, time/space interpolation is computed and
modified as necessary. Forcing data is used to specify the boundary conditions
to the land surface model. The LIS driver applies time/space interpolation to
convert the forcing data to the appropriate resolution required by the model.
The selected model is run for a vector of “tiles” and output and restart files are
written at the specified output interval.

Some of the salient features provided by the LIS driver include:

6

• Vegetation type-based “tile” or “patch” approach to simulate sub-grid
scale variability.

• Makes use of various satellite and ground-based observational systems.

• Derives model parameters from existing topography, vegetation, and soil
coverages.

• Extensible interfaces to facilitate incorporation of new land surface models,
forcing schemes.

• Uses a modular, object oriented style design that allows “plug and play”
of different features by allowing user to select only the components of
interest while building the executable.

• Ability to perform regional modeling (only on the domain of interest).

• Provides a number of scalable parallel processing modes of operation.

Please refer to the software design document for a detailed description of the
design of LIS driver. The LIS developer’s guide describes how to use the exten-
sible interfaces in LIS. The “plug and play” feature of different components is
described in this document.

2.3 Community Land Model (CLM)

CLM (Community Land Model) is a 1-D land surface model, written in Fortran
90, developed by a grass-roots collaboration of scientists who have an interest
in making a general land model available for public use. LIS currently uses
CLM version 2.0. CLM version 2.0 was released in May 2002. The source
code for CLM 2.0 is freely available from the National Center for Atmospheric
Research (NCAR) [4]. The CLM is used as the land model for the Community
Climate System Model (CCSM) (http://www.ccsm.ucar.edu/), which includes
the Community Atmosphere Model (CAM) (http://www.cgd.ucar.edu/cms/).
CLM is executed with all forcing, parameters, dimensioning, output routines,
and coupling performed by an external driver of the user’s design (in this case
done by LIS). CLM requires pre-processed data such as the land surface type,
soil and vegetation parameters, model initialization, and atmospheric boundary
conditions as input. The model applies finite-difference spatial discretization
methods and a fully implicit time-integration scheme to numerically integrate
the governing equations. The model subroutines apply the governing equations
of the physical processes of the soil-vegetation-snowpack medium, including the
surface energy balance equation, Richards’ [12] equation for soil hydraulics, the
diffusion equation for soil heat transfer, the energy-mass balance equation for
the snowpack, and the Collatz et al. [9] formulation for the conductance of
canopy transpiration.

7

2.4 The Community Noah Land Surface Model

The community Noah Land Surface Model is a stand-alone, uncoupled, 1-D col-
umn model freely available at the National Centers for Environmental Prediction
(NCEP; [6]). The name is an acronym representing the various developers of the
model (N: NCEP; O: Oregon State University, Dept. of Atmospheric Sciences;
A: Air Force (both AFWA and AFRL - formerly AFGL, PL); and H: Hydro-
logic Research Lab - NWS (now Office of Hydrologic Development – OHD)).
Noah can be executed in either coupled or uncoupled mode. It has been coupled
with the operational NCEP mesoscale Eta model [10] and its companion Eta
Data Assimilation System (EDAS) [13], and the NCEP Global Forecast System
(GFS) and its companion Global Data Assimilation System (GDAS). When
Noah is executed in uncoupled mode, near-surface atmospheric forcing data
(e.g., precipitation, radiation, wind speed, temperature, humidity) is required
as input. Noah simulates soil moisture (both liquid and frozen), soil temper-
ature, skin temperature, snowpack depth, snowpack water equivalent, canopy
water content, and the energy flux and water flux terms of the surface energy
balance and surface water balance. The model applies finite-difference spatial
discretization methods and a Crank-Nicholson time-integration scheme to nu-
merically integrate the governing equations of the physical processes of the soil
vegetation-snowpack medium, including the surface energy balance equation,
Richards’ [12] equation for soil hydraulics, the diffusion equation for soil heat
transfer, the energy-mass balance equation for the snowpack, and the Jarvis [11]
equation for the conductance of canopy transpiration.

2.5 Variable Infiltration Capacity (VIC) Model

Variable Infiltration Capacity (VIC) model is a macroscale hydrologic model,
written in C, being developed at the University of Washington and Prince-
ton University. The VIC code repository along with the model description
and source code documentation is publicly available at the Princeton web-
site [7]. VIC is used in macroscopic land use models such as SEA - BASINS
(http://boto.ocean.washington.edu/seasia/intro.htm). VIC is a semi-distributed,
grid-based hydrological model, which parameterizes the dominant hydromete-
orological processes taking place at the land surface - atmospheric interface.
The execution of VIC model requires preprocessed data such as precipitation,
temperature, meteorological forcing, soil and vegetation parameters, etc. as
input. The model uses three soil layers and one vegetation layer with energy
and moisture fluxes exchanged between the layers. The VIC model represents
surface and subsurface hydrologic processes on a spatially distributed (grid cell)
basis. Partitioning grid cell areas to different vegetation classes can approximate
sub-grid scale variation in vegetation characteristics. VIC models the processes
governing the flux and storage of water and heat in each cell-sized system of
vegetation and soil structure. The water balance portion of VIC is based on
three concepts: 1) Division of grid-cell into fraction sub-grid vegetation cover-
ages.

8

2) The variable infiltration curve for rainfall/runoff partitioning at the land sur-
face.
3) A baseflow/deep soil moisture curve for lateral baseflow.

Water balance calculations are preformed at three soil layers and within a
vegetation canopy. An energy balance is calculated at the land surface. A full
description of algorithms in VIC can be found in the references listed at the
VIC website.

2.6 GrADS-DODS Server

A GrADS-DODS Server (GDS) is a data server built upon the Grid Analysis
and Display System (GrADS) and the Distributed Oceanographic Data System
(DODS).

GrADS is an earth science data manipulation and visualization tool under
development at the Center for Ocean-Land-Atmosphere Studies (COLA) (http:
//http://grads.iges.org/cola.html). See http://grads.iges.org/grads/
grads.html for more detailed information about GrADS.

DODS, also called the Open source Project for a Network Data Access Pro-
tocol (OPeNDAP), is a protocol for serving data-sets stored in various formats
over a network. See http://www.unidata.ucar.edu/packages/dods/ for more
detailed information about DODS.

A GDS may be used to provide the LIS driver with the forcing and input
parameter data needed to run an LSM.

A GDS is an optional component of the LIS system. LIS may be run without
using a GDS to access the forcing and input parameter data-sets. All necessary
forcing and input parameter data-sets may be stored on locally-accessable hard-
disks and read in directly by the LIS driver, provided the computer system has
sufficient memory.

The intent of a GDS for the LIS project is to provide the LIS driver with
subsets of the forcing and input parameter data-sets, so that large-scale, high-
resolution domains may be broken-up/parallelized and processed across many
compute-nodes of a Beowulf cluster.

9

http://http://grads.iges.org/cola.html
http://http://grads.iges.org/cola.html
http://grads.iges.org/grads/grads.html
http://grads.iges.org/grads/grads.html
http://www.unidata.ucar.edu/packages/dods/

3 Preliminaries

This code has been compiled and run on both SGI IRIX64 6.5 systems and
Linux PC (Intel/AMD based) systems. These instructions expect that you are
using such a system. In particular you need

Software:

• SGI

– MIPSpro version 7.3.1.1m

– Message Passing Toolkit, mpt, version 1.5.3.0

– GNU’s make, gmake, version 3.77

• Linux

– Absoft’s Pro Fortran Software Developement Kit, version 8.0
or
Lahey/Fujitsu’s Fortran 95 Compiler, release L6.00c

– GNU’s C and C++ compilers, gcc and g++, version 2.96

– MPICH , version 1.2.5.2

– GNU’s make, gmake, version 3.77

System Resources:
1/4 deg 5 km 1 km

memory 250 MB 32 GB 800 MB (per patch)
hard disk space 3 GB 46 GB 850 GB
source 64 MB 64 MB 64 MB
input data 1.5 GB 25 GB 200 GB
output data 1 GB 20 GB 640 GB

Note, the requirements for input and output data are for a 1-day simulation.

You need to create a working directory on your system that has sufficient
disk space to install and run in. Throughout the rest of this document this
directory shall be refered to as $WORKING.

10

4 Running Modes

The computational and resource requirements increase significantly for global
modeling at high resolutions such as 5 km and 1 km. The land surface mod-
eling component in LIS is designed to handle these requirements and perform
high-performance, parallel simulation of global, regional, and local land surface
processes with a number of land surface models.

LIS is designed to operate in a number of high performance running modes
to meet the diverse requirements of distributed memory and shared memory
platforms. LIS can operate in two different parallel modes based on the way
data is handled by the LIS driver. In the message passing interface (MPI)-based
paradigm, a master processor handles data for the entire domain, computes do-
main decomposition, and subsequently distributes data onto the compute nodes.
This paradigm is limited by the amount of memory available to the master pro-
cessor. On a shared memory platform, a pool of processors can be used to make
a large amount of memory available. To handle increased memory requirements
and the limited resources available on a distributed memory environment, a
GrADS-DODS Server (GDS)-based running mode can be used in LIS. In this
mode of operation, the compute nodes retrieve data from a GDS server. This
mode of operation is no longer constrained by the lack of a large pool of memory
on the master processor.

The LIS driver also includes the capabillity to perform regional modeling
in addition to global scales. The domain information can be specified by a
user, and the LIS driver handles the subsetting tasks. In the MPI-mode, the
subsetting information is derived from a larger domain, whereas in the GDS-
mode, the subsetting is carried out by requesting appropriate data from the
GDS-server. The details of using these different options are described in the
following sections.

Note, both parallel running modes require the Message Passing Interface
libraries.

4.1 MPI-Based Running Mode

This running mode is not implemented in this proto-type release. LIS must be
compiled with MPI support, but it can only be run as a single-process job.

4.2 GDS-Based Running Mode

In order to run LIS using the GDS-based running mode, you must first install
a GDS and a DODS enabled version of GrADS. Then you must compile the
GDS-based running mode support into LIS’ executable.

To install a GrADS-DODS Server simply go to http://grads.iges.org/
grads/gds/ and follow the on-line instructions.

Once you have installed the GDS, you must install a DODS enabled version
of GrADS. Go to http://grads.iges.org/grads/grads.html and follow the
downloading instructions.

11

http://grads.iges.org/grads/gds/
http://grads.iges.org/grads/gds/
http://grads.iges.org/grads/grads.html

After you have installed both the GDS and the GrADS packages, you must
edit the GDS data retrieving script, $WORKING/LIS/opendap scripts/getdata.pl.
You must modify the definitions of the $server and $GrADS variables to reflect
your installation.

See Section 5 for instructions on downloading the source code, and see Sec-
tion 7.3 for instructions on compiling the GDS-based running mode support into
LIS’ executable.

Note, currently, the GDS-based running mode only supports global simula-
tions.

4.3 Non-parallel Running Mode

This running mode is not implemented in this proto-type release. LIS must be
compiled with MPI support, but it can only be run as a single-process job.

4.4 1 km Global Runs

The 1 km global run is a special case of the GDS-based running mode. You
must first follow the steps in Section 4.2 to properly configure your system.
Once configured, you must run the special 1 km scripts.

The main 1 km script drives a pool-of-tasks scheme for parallelizing the
computations over the global 1 km domain. This global domain has already
been divided into 1183 sub-domain patches, each containing 720 × 300 grid-
points. The driver script monitors the availability of each compute node of LIS’
Linux cluster, and it pushes a sub-domain patch onto each free node. Should,
for any reason, the computations on a compute node crash, the corresponding
sub-domain patch is returned to the list of patches-to-complete (the “pool”),
where it will wait until it is reassigned.

12

5 Obtaining the Source Code

This section describes how to obtain the source code needed to build the LIS
executable.

5.1 Downloading the Source Code

To obtain the source code needed for LIS’ “Interoperability Release” revision
LIS-ESMF:

1. Go to LIS’ “Public Release Home Page”

Go to http://lis.gsfc.nasa.gov/

Follow the “Documentation” link.

Follow the “Milestone J Page”

Follow the “LIS-ESMF Code Release” link.

2. From LIS’ “Public Release Home Page”

Follow the “LIS-ESMF Source Code and Scripts” link.

3. Download the required source.tar.gz and scripts.tar.gz files into your work-
ing directory, $WORKING/LIS.

Use the “LIS driver and Land Surface Models” link to get source.tar.gz.

Use the “LIS scripts” link to get scripts.tar.gz.

4. Unpack these files. Run (in the order listed):

% gzip -dc source.tar.gz | tar xf -
% gzip -dc scripts.tar.gz | tar xf -

Unpacking the scripts.tar.gz file will also create the input directory tree
needed for downloading the input data-sets.

5. Download the optional (if desired) postproc.tar.gz and opendap scripts.tar.gz
files into your working directory, $WORKING/LIS.

Use the “Post-processing scripts” link to get postproc.tar.gz.

Use the “GDS scripts” link to get opendap scripts.tar.gz.

Unpack them.

% gzip -dc postproc.tar.gz | tar xf -
% gzip -dc opendap scripts.tar.gz | tar xf -

13

http://lis.gsfc.nasa.gov/

5.2 Source files

Unpacking the source.tar.gz file will create a $WORKING/LIS/src sub-directory.
The structure of src is as follows:

Directory Name Synopsis
driver LIS driver routines
lsm-plugin Modules defining the function table registry of

included LSMs
domains Routines to create various supported domains
f2lsm Custom-defined ESMF gridded component coupler
forcingGridComp Forcing implemented as a gridded ESMF component
lsmGridComp LSM implemented as a gridded ESMF component
main ESMF superstructure application driver
domain-plugin Modules defining function table registries of

included domains
forcing-plugin Modules defining function table registries of

included model forcing, observed radiation,
and precipitation forcing products

baseforcing Top level directory for base forcing methods
baseforcing/geos Routines for handling GEOS forcing product
baseforcing/gdas Routines for handling GDAS forcing product
interp Interpolation routines (Based on NCEP’s

ipolates library)
lib Libraries needed for linking
make Makefile and needed headers
lsms/clm2 Top level clm2 land surface model sub-directory
lsms/clm2/biogeochem Biogeochemistry routines
lsms/clm2/biogeophys Biogeophysics routines (e.g., surface fluxes)
lsms/clm2/camclm share Code shared between the clm2 and cam (e.g., calendar information)
lsms/clm2/csm share Code shared by all the geophysical model components of the

Community Climate System Model (CCSM). Currently contains
code for CCSM message passing orbital calculations and
system utilities

lsms/clm2/ecosysdyn Ecosystem dynamics routines (e.g., leaf and stem area index)
clm2/main Control (driver) routines
clm2/mksrfdata Routines for generating surface data-sets
clm2/utils Independent utility routines
lsms/noah.2.6 Noah land surface model version 2.6
lsms/vic VIC land surface model

Source code documentation may be found on LIS’ web-site at
http://lis.gsfc.nasa.gov/Documentation/MilestoneJ/lis/index.html

14

http://lis.gsfc.nasa.gov/
http://lis.gsfc.nasa.gov/Documentation/MilestoneJ/lis/index.html

5.3 Scripts

The scripts.tar.gz file contains a script for compiling and building the executable
and a sample card file used for running the LIS executable and for configuring
the individual runs. These are described in Section 8.

Unpacking the scripts.tar.gz file will place the following files into the $WORK-
ING/LIS sub-directory:

File Name Synopsis
lis.crd Sample card file
comp.csh Compile and build script
utils The in-line documentation processing scripts
input An empty directory tree to hold the input data

5.4 Post-processing

The postproc.tar.gz file contains the source and data files needed for generating
data-plots using GrADS [1]. Post-processing is described in Section 9.

Unpacking the postproc.tar.gz file will create a $WORKING/LIS/postproc
sub-directory. The structure of postproc is as follows:

File Name Synopsis
noah.25.ctl GrADS descriptor file for 1/4 deg. Noah data
noah.25.gs Script for generating 1/4 deg. Noah data plots
clm.25.ctl GrADS descriptor file for 1/4 deg. CLM data
clm.25.gs Script for generating 1/4 deg. CLM data plots
vic.25.ctl GrADS descriptor file for 1/4 deg. VIC data
vic.25.gs Script for generating 1/4 deg. VIC data plots
pdef Directory containing global pdef files

(only needed when reading 1-d output data files)

5.5 Opendap Scripts

The opendap scripts.tar.gz file contains the scripts used by LIS to access data
from a GDS server.

Unpacking the opendap scripts.tar.gz file will create a $WORKING/LIS/opendap scripts
sub-directory. The structure of opendap scripts is as follows:

File Name Synopsis
getdata.pl Main GDS data-retrieval script
links.sh Symbolic link generating script

The getdata.pl Perl script retrieves data from a GDS by issuing GrADS
commands. See the documentation for getdata.pl for more details about this
script.

Note, you must modify the definitions of the $server and $GrADS variables
to reflect your installation of a GDS and GrADS. See Section 4.2.

15

LIS never directly calls the getdata.pl script by name, rather it calls the
script by one of the script’s many aliases. These aliases (or symbolic links)
must be created before LIS is run. Run the links.sh script to generate all the
links needed by LIS driver.

16

6 Obtaining the Data-sets

This section describes how to obtain the data-sets needed to run the LIS exe-
cutable.

6.1 Downloading the Data-sets

To obtain the data-sets needed for LIS’ “Interoperability Release” revision LIS-
ESMF:

1. Go to LIS’ “Home Page”

Go to http://lis.gsfc.nasa.gov/

2. Follow the “Get LIS Data” link.

The Milestone “G” Section provides links to the land surface parameters
and atmospheric forcing data.

6.2 Downloading Parameter Data-sets

Land surface models simulate the physical and dynamical processes of the land
surface. Driven by external forcing, the spatial and temporal evolution of these
processes are intrinsically determined by the physical and dynamical properties,
or parameters, of the land surface. Please follow the link to land surface param-
eters under Milestone “G” to obtain parameter data-sets. It is recommended
that the files be organized according to the domain resolution and land surface
model type.

The following section provide examples of how to download the 1/4 deg.
parameter data-sets. Downloading the 5 km and 1 km parameter data-sets is
similar.

6.2.1 Example: Downloading the 1/4 Deg. Parameter Data-sets via
http

To obtain the 1/4 degree parameter data-sets needed for LIS’ “Interoperability
Release” revision LIS-ESMF using http:

1. From the Milestone “G” Section (See Section 6.1)

Follow the “Land Surface Parameters” link.

2. Get the “UMD Land/Sea Mask” file from the “Data-sets used by all LIS
land surface models” section.

Use the “HTTP” link to save the UMD land/sea mask file into
$WORKING/LIS/input/GVEG/1 4deg/

3. Get the “UMD Vegetation Classification map” file from the “Data-sets
used by all LIS land surface models” section.

17

http://lis.gsfc.nasa.gov/

Use the “HTTP” link to save the UMD tile-space vegetation file into
$WORKING/LIS/input/GVEG/1 4deg/

4. Get the “Soil color” file from the “Data-sets used by all LIS land surface
models” section.

Use the “HTTP” link to save the soil color file into
$WORKING/LIS/input/BCS/1 4deg/

5. Get the “Soil clay fraction” file from the “Data-sets used by all LIS land
surface models” section.

Use the “HTTP” link to save the soil clay fraction file into
$WORKING/LIS/input/BCS/1 4deg/

6. Get the “Soil sand fraction” file from the “Data-sets used by all LIS land
surface models” section.

Use the “HTTP” link to save the soil sand fraction file into
$WORKING/LIS/input/BCS/1 4deg/

7. Get the “Canopy height look-up table” from the “CLM Data-sets” section.

Use the html link to save the canopy height look-up table as clm2 ptcanhts.txt
into
$WORKING/LIS/input/BCS/clm parms

8. Get the “Vegetation classification look-up table” from the “CLM Data-
sets” section.

Use the html link to save the vegetation classification look-up table as
umdvegparam.txt into
$WORKING/LIS/input/BCS/clm parms

9. Get the “Monthly Leaf Area Index” files from the “CLM Data-sets” sec-
tion.

Follow the html link.

Then save the 12 monthly leaf area index files into $WORKING/LIS/input/AVHRR LAI

Return to main parameter data page.

10. Get the “Monthly Stem Area Index” files from the “CLM Data-sets” sec-
tion.

Follow the html link. (The same link as for LAI.)

Then save the 12 monthly stem area index files into $WORKING/LIS/input/AVHRR LAI

Return to main parameter data page.

11. Get the “Vegetation look-up table” from the “Noah Data-sets” section.

Use the html link to save the vegetation look-up table as noah.vegparms.txt
into
$WORKING/LIS/input/BCS/noah parms

18

12. Get the “Soil look-up table” from the “Noah Data-sets” section.

Use the html link to save the soil look-up table as noah.soilparms.txt into
$WORKING/LIS/input/BCS/noah parms

13. Get the “Quarterly albedo climatology” from the “Noah Data-sets” sec-
tion.

Follow the html link.

Then save the 4 quarterly albedo climatology files into
$WORKING/LIS/input/BCS/1 4deg/NOAH

Return to main parameter data page.

14. Get the “Monthly greeness fraction climatology” from the “Noah Data-
sets” section.

Follow the html link.

Then save the 12 monthly greeness fraction climatology files into
$WORKING/LIS/input/BCS/1 4deg/NOAH

Return to main parameter data page.

15. Get the “Maximum snow albedo” from the “Noah Data-sets” section.

Use the “HTTP” link to save the maximum snow albedo files into
$WORKING/LIS/input/BCS/1 4deg/NOAH

16. Get the “Bottom temperature without elevation correction” files from the
“Noah Data-sets” section.

Use the “HTTP” link to save the bottom temperature without elevation
correction file into
$WORKING/LIS/input/BCS/1 4deg/NOAH

17. Get the “Vegetation look-up table” from the “VIC Data-sets” section.

Use the html link to save the vegetation look-up table as veg lib.txt into
$WORKING/LIS/input/BCS/vic parms

18. Get the “Soil look-up table” from the “VIC Data-sets” section.

Use the html link to save the soil look-up table as soil.txt into
$WORKING/LIS/input/BCS/vic parms

Note, files with names ending in .gz have been compressed using GNU’s gzip.
They must be “unzipped” before using. Files with names ending in .tar.gz have
been packaged using GNU’s tar and compressed using GNU’s gzip. They must
be “unzipped” and “untarred” before using.

19

6.2.2 Example: Downloading the 1/4 Deg. Parameter Data-sets via
GDS

To obtain the 1/4 degree parameter data-sets needed for LIS’ “Interoperability
Release” revision LIS-ESMF using GDS, consider the following example:

Getting the Noah “Bottom Temperature”, tbot, data.
Click on the “Tbot” link in the “GDS” column. You will see screen-shot 1.
Then using a DODS enabled GrADS client (see Section 4.2), issue the fol-

lowing GrADS’ commands at the GrADS’ prompt:

ga-> sdfopen http:// -- registered users will see a valid url --
ga-> set fwex
ga-> set t 1
ga-> set x 1 1440
ga-> set y 1 600
ga-> set fwrite -be -sq tbot.bfsa
ga-> set gxout fwrite
ga-> d tbot
ga-> quit

where:

“http:// – registered users will see a valid url –” comes from the “DODS
URL:” line.

“set t 1” comes from the “Time:” line – (1 points).

“set x 1 1440” comes from the “Longitude:” line – (1440 points, avg. res.
0.25◦).

“set y 1 600” comes from the “Latitude:” line – (600 points, avg. res.
0.25◦).

“d tbot” comes from the list of “Variables:”.

This will save the tbot data onto your local disk in the file tbot.bfsa.
The other data-sets may be obtained from LIS’ public GDS in a similar

manner. Note, not all the data-sets are in a format suitable for serving through a
GDS. Those data-sets must be obtained using the steps outlined in the previous
“http” example (Section 6.2.1).

6.3 Downloading the Forcing Data-sets

As mentioned earlier, the land surface models in LIS are forced by model-derived
output and satellite and ground-based observations. The data-sets are available
through the above link to atmospheric forcing data under the Milestone “G”
data page.

20

Figure 1: Screen-shot of tbot GDS link

21

6.3.1 Example: Downloading the 1/4 Deg. Forcing Data-sets via
http

To obtain the 1/4 degree forcing data-sets needed for LIS’ “Interoperability
Release” revision LIS-ESMF using http:

1. From the Milestone “G” Section (See Section 6.1)

Follow the “Atmospheric Forcing Data” link.

2. Get the “GDAS” file.

Use the “HTTP” link to save the GDAS forcing data-set into
$WORKING/LIS/input/FORCING/GDAS/

Note, this is 1-month sample of GDAS forcing data from 01 June 2001 to
30 June 2001.

3. Get the “GEOS3” file.

Use the “HTTP” link to save the GEOS3 forcing data-set into
$WORKING/LIS/input/FORCING/GEOS/

Note, this is 1-month sample of GDAS forcing data from 01 June 2001 to
30 June 2001.

4. Get the “GDAS Elevation Correction” file.

Follow the html link.

Use the “HTTP” link to save the GDAS elevation correction data differ-
ences file into
$WORKING/LIS/input/FORCING/

Return to main forcing data page.

5. Get the “GEOS3 Elevation Correction” file.

Follow the html link.

Use the “HTTP” link to save the GEOS3 elevation correction data differ-
ences file into
$WORKING/LIS/input/FORCING/

Return to main forcing data page.

6. Get the “GEOS4 Elevation Correction” file.

Follow the html link.

Use the “HTTP” link to save the GEOS4 elevation correction data differ-
ences file into
$WORKING/LIS/input/FORCING/

Return to main forcing data page.

22

7. Get the “AGRMET shortwave flux” file.

Use the “HTTP” link to save the AGRMET shortwave flux file into
$WORKING/LIS/input/FORCING/AGRMET/

Note, this is 1-month sample of AGRMET forcing data from 01 June 2001
to 30 June 2001.

8. Get the “AGRMET longwave flux” file.

Use the “HTTP” link to save the AGRMET longwave flux file into
$WORKING/LIS/input/FORCING/AGRMET/

Note, this is 1-month sample of AGRMET forcing data from 01 June 2001
to 30 June 2001.

9. Get the “CMAP Precipitaion” file.

Use the “HTTP” link to save the CMAP precipitation file into
$WORKING/LIS/input/FORCING/CMAP/

Note, this is 1-month sample of AGRMET forcing data from 01 June 2001
to 30 June 2001.

Note, files with names ending in .gz have been compressed using GNU’s gzip.
They must be “unzipped” before using. Files with names ending in .tar.gz have
been packaged using GNU’s tar and compressed using GNU’s gzip. They must
be “unzipped” and “untarred” before using.

Note, to obtain data outside of this 1-month sample, you must use the GDS.
Obtaining the forcing data-sets via the GDS is similar to the example given

in Section 6.2.2.

6.4 Downloading the Sample Output Data-sets

In addition to the above required parameter and forcing data-sets, LIS provides
sample output data-sets that may be downloaded and used for comparision.
These data-sets are available through LIS’ public data server. You must use a
DODS enabled GrADS client (see Section 4.2) to access the data.

6.4.1 Example: Downloading The Sample 1/4 Deg. Output Data-
sets Via GDS

To obtain the sample 1/4 degree output data-sets from LIS’ “Interoperability
Release” revision LIS-ESMF using GDS, consider the following example:

Getting the Noah GEOS output data.

1. Go to LIS’ public data server

Go to http://lisdata.gsfc.nasa.gov:9090/dods/

2. Then follow the “LIS-DATA” → “Output” → “global” → “1 4deg” links.

3. Then click on the “NOAH-GEOS“ “info” link.

23

You will be presented with a page similar to screen-shot 1.
To get only the “net shortwave radiation” variable, issue the following GrADS’

commands at the GrADS’ prompt:

ga-> sdfopen http://http://lisdata.gsfc.nasa.gov:9090/dods/\
LIS-DATA/Output/global/1 4deg/NOAH-GEOS
ga-> set fwex
ga-> set t 1 8
ga-> set x 1 1440
ga-> set y 1 600
ga-> set fwrite -be -sq swnet.bfsa
ga-> set gxout fwrite
ga-> d swnet
ga-> quit

To get all variables, issue the following GrADS’ commands at the GrADS’
prompt:

ga-> sdfopen http://http://lisdata.gsfc.nasa.gov:9090/dods/\
LIS-DATA/Output/global/1 4deg/NOAH-GEOS
ga-> set fwex
ga-> set t 1 8
ga-> set x 1 1440
ga-> set y 1 600
ga-> set fwrite -be -sq noah.geos.bfsa
ga-> set gxout fwrite
ga-> d swnet
ga-> d lwnet
ga-> d qle
ga-> d qh
ga-> d qg
ga-> d snowf
ga-> d rainf
ga-> d evap
ga-> d qs
ga-> d qsb
ga-> d qsm
ga-> d delsoilmoist
ga-> d delswe
ga-> d avgsurft
ga-> d albedo
ga-> d swe
ga-> d soilmoist1
ga-> d soilmoist2
ga-> d soilmoist3
ga-> d soilmoist4

24

ga-> d soilwet
ga-> d tveg
ga-> d esoil
ga-> d rootmoist
ga-> d wind
ga-> d rainfforc
ga-> d snowfforc
ga-> d tair
ga-> d qair
ga-> d psurf
ga-> d swdown
ga-> d lwdown
ga-> quit

See Section 6.2.2 for more details.
Downloading the “CLM-GEOS” and “VIC-GEOS” data-sets is similar.

6.4.2 Viewing The Sample 1/4 Deg. Output Data-sets

Instead of downloading these sample output data-sets, you may view the data
on-line. Follow the instructions in Section 6.4.1 that take you to the “NOAH-
GEOS” “info” page on LIS’ public data server. The follow the “Visualize!” link
for whichever variable you wish to see. You will be presented with an easy-to-use
interface for examining a data-plot of your chosen variable.

25

7 Building the Executable

This section describes how to build the source code and create LIS’ executable
– named LIS.

First perform the steps described in Section 5.
If you are building on a Linux pc system, you must edit the Makefile lo-

cated in $WORKING/LIS/src/make. Change the definition of MPI PREFIX
to the directory where you installed MPICH. Currently MPI PREFIX is set to
/data1/jim/local/mpich-1.2.4-absoft. Next, you must edit the definition of ESMF ARCH.
Currently it is defined to be linux absoft, which specifies that you are using
Absoft’s Fortran compiler. If you are using Lahey’s Fortran compiler, change
ESMF ARCH to linux lf95.

Then

1. Change directory into $WORKING/LIS/.

% cd $WORKING/LIS/

2. Run the compiling script.

% ./comp.csh

See Appendix B to see the Makefile.

7.1 General Build Instructions

This section describes how to build the LIS code on a platform other than those
discussed in Section 3.

7.1.1 Required Software Libraries

In order to build the LIS executable, the following libraries must be installed
on your system:

• Message Passing Interface (MPI)

– vendor supplied, or

– MPICH
(http://http://www-unix.mcs.anl.gov/mpi/mpich/)

• Earth System Modeling Framework (ESMF) version 2.0.0rp2 (http://www.esmf.ucar.edu/)

• bacio

• w3lib

To install the MPI libraries, follow the instructions provided at the MPI
URL listed above.

Note: Due to the mix of programing languages (Fortran and C) used by LIS,
you may run into linking errors when building the LIS executable.

26

When compiling code using Absoft’s Pro Fortran SDK, set the following
compiler options:

-YEXT NAMES=LCS -s -B108 -YCFRL=1
These must be set for each of the above libraries.

7.1.2 Modifying the Makefile

This section lists the variables in the Makefile that must be set by the user
before compiling.

Variable Description
UNAMES set by call to uname to determine what type of system you are using.

Determine which variable (UNAMES or UMACHINE) will contain the needed
information and use it.

UMACHINE set by call to uname to determine what type of system you are using.
Determine which variable (UNAMES or UMACHINE) will contain the needed
information and use it.

MPI PREFIX path to where mpi libraries are installed
LIB MPI path to mpi libraries
INC MPI path to mpi header files
ESMF DIR path to where esmf libraries are installed
LIB ESMF path to esmf libraries
MOD ESMF path to esmf modules
ESMF ARCH system on which esmf libraries were compiled
FC fortran compiler
CPP C preprocessor
LIB DIR path to where lis libraries are installed
CPPFLAGS flags for C preprocessor
CFLAGS flags for C compiler
FFLAGS flags for Fortran compiler
FOPTS additional options for compiler and linker
LDFLAGS flags for linker
NEW ARCH HERE replace this with the type of system you are

using, either the result from uname -s or uname -m.
E.g., IRIX64 or i686

Note: For Linux architectures, the default ESMF ARCH is set to be linux absoft.
For Linux systems using the Lahey Fortran compiler, ESMF ARCH must be changed
to linux lf95.

7.2 Compiling non-parallel running mode

This running mode is not implemented in this proto-type release. LIS must be
compiled with MPI support, but it can only be run as a single-process job.

27

7.3 Compiling GrADS-DODS Support

The above building instructions generate a LIS executable that reads input data
off of local disk (the MPI-based running mode). To compile an executable that
uses a GrADS-DODS server 1 to retrieve input data files (the GDS-based run-
ning mode), you must edit the Makefile. Find the appropriate FFLAGS definition
in the Makefile. Add -DOPENDAP to the end of the definition. Then follow the
above building instructions.

7.4 Generating documentation

LIS code uses the ProTex documenting system [2]. The documentation in LATEX
format can be produced by typing gmake doc in the $WORKING/LIS/src/make
directory. This command produces documentation, generating all the files in
$WORKING/LIS/doc directory. These files can be easily converted to pdf or
html formats using utilites such as pdflatex or latex2html.

1This LIS distribution is configured to retrieve data using LIS’ GrADS-DODS server.

28

8 Running The Executable

This section describes how to run the LIS executable. Once the LIS executable
is built, a simulation can be performed using the lisconfig.sh file. As described
in Section 4, LIS can only be executed through an mpirun script. Assuming
that MPI is installed correctly, the LIS simulation is carried out by the following
command issued from within the $WORKING/LIS directory.

% mpirun -np 1 ./LIS
The -np flag indicates the number of processors used in the run. On a multi-

processor machine, the parallel processing capbabilities of LIS can be exploited
using this flag.

See Section 8.3 for instructions on running LIS over the global 1 km domain.

8.1 Configuring Run Via LIS Configuration File

This section describes how to configure your LIS run by specifying the options
in the lisconfig.sh configuration file.

Refer to Appendix A to see a sample lis configuration file. This configuration
file is documented. Refer to the comments within it to configure your run.

8.2 Domain Example

This section describes how to compute the values for the #Domain section of the
lisconfig.sh configuration file.

First, we shall generate the values for the parameter data domain. These
are the values Param Lat (LL), Param Lon (LL), Param Lat (UR), Param Lon
(UR), Param deltax, and Param deltay. LIS’ parameter data is defined on a
Latitude/Longitude grid, from −180 to 180 degrees longitude and from −60 to
90 degrees latitude.

Since the parameter data is on a Latitude/Longitude grid, we set

Grid Projection: 0

For this example, consider running at 1/4 deg resolution. The coordinates
of the south-west and the north-east points are specified at the grid-cells’ centers.
Here the south-west grid-cell is given by the box (−180,−60), (−179.750,−59.750).
The center of this box is (−179.875,−59.875). 2

Param Lat (LL): -59.875
Param Lon (LL): -179.875

The north-east grid-cell is given by the box (179.750, 89.750), (180, 90). Its
center is (179.875, 89.875).

Param Lat (UR): 89.875
Param Lon (UR): 179.875

2Note, these coordinates are ordered (longitude, latitude).

29

Setting the resolution (0.25 deg) gives

Param deltax: 0.25
Param deltay: 0.25

And this completely defines the parameter data domain.
If you wish to run over the whole domain defined by the parameter data do-

main then you simply set the values of Run Lat (LL), Run Lon (LL), Run Lat
(UR), Run Lon (UR), Run deltax, and Run deltay equal to the values given by
Param Lat (LL), Param Lon (LL), Param Lat (UR), Param Lon (UR), Param
deltax, and Param deltay. This gives

Run Lat (LL): -59.875
Run Lon (LL): -179.875
Run Lat (UR): 89.875
Run Lon (UR): 179.875
Run deltax: 0.25
Run deltay: 0.25

Now say you wish to run only over the region given by (−97.6, 27.9), (−92.9, 31.9).
Since the running domain is a sub-set of the parameter domain, it is also a Lat-
itude/Longitude domain at 1/4 deg. resolution. Thus,

Run deltax: 0.25
Run deltay: 0.25

Now, since the running domain must fit onto the parameter domain, the
desired running region must be expanded from (−97.6, 27.9), (−92.9, 31.9) to
(−97.75, 27.75), (−92.75, 32.0). The south-west grid-cell for the running domain
is the box (−97.75, 27.75), (−97.5, 28.0). Its center is (−97.625, 27.875); giving

Run Lat (LL): 27.875
Run Lon (LL): -97.625

The north-east grid-cell for the running domain is the box (−93, 31.75), (−92.75, 32.0).
Its center is (−92.875, 31.875); giving

Run Lat (UR): 31.875
Run Lon (UR): -92.875

This completely defines the running domain.
Note, the LIS project has defined 5 km resolution to be 0.05 deg. and 1 km

resolution to be 0.01 deg. If you wish to run at 5 km or 1 km resolution, redo
the above example to compute the appropriate grid-cell values.

See Figure 2 for an illustration of adjusting the running grid. See Figures 3
and 4 for an illustration of the south-west and north-east grid-cells.

30

Figure 2: Illustration showing how to fit the desired running grid onto the actual
grid

31

Figure 3: Illustration showing the south-west grid-cell corresponding to the
example in Section 8.2

32

Figure 4: Illustration showing the north-east grid-cell corresponding to the ex-
ample in Section 8.2

33

8.3 Running Over The 1 km Domain

Note, these instructions are specific to LIS’ Linux cluster.
To run LIS over the global 1 km domain, you must use the special “1 km”

scripts.
Before running the scripts you must edit the farmer.conf configuration file

found in /data1/pool/control. The variables to set are:

cardfile
lsm
exp

cardfile specifies the full path to the lisconfig.sh card file.
lsm specifies the land surface model being run. Acceptable values are:

NOAH
CLM2
VIC

exp is a label used to distinguish the simulation. It is used to construct
a “snap-shot” directory. This “snap-shot” directory contains information that
records which sub-domain patches each compute node processes. This informa-
tion is used to assemble the output.

After editting the farmer.conf, you then run the create-bones.pl and start-
farmer-dogs.pl Perl scripts, which are also in /data1/pool/control.

% cd /data1/pool/control
% ./create-bones.pl
% ./start-farmer-dogs.pl

create-bones.pl constructs the “pool” of sub-domains to process. start-farmer-
dogs.pl starts the simulation.

34

9 Output Data Processing

This section describes how to process the generated output.
The output data-sets created by running the LIS executable are written

into sub-directories of the $WORKING/LIS/OUTPUT/ directory (created at
run-time). These sub-directories are named EXP999 (by default).

The output data consists of ASCII text files and model output in binary
format.

For example, assume that you performed a “1/4 deg Noah with GEOS forc-
ing” simulation for 11 June 2001, with an experiment code value of 999, and
writing output as a 2-D array.

This run will produce a $WORKING/LIS/OUTPUT/EXP999/ directory.
This directory will contain:

File Name Synopsis
Noahstats.dat Statistical summary of output
NOAH Directory containing output data

The NOAH directory will contain sub-directories of the form YYYY/YYYYMMDD,
where YYYY is a 4-digit year and YYYYMMDD is a date written as a 4-digit
year, 2-digit month and a 2-digit day; both corresponding to the runnnig dates
of the simulation.

For this example, NOAH will contain a 2001/20010611 sub-directory.
Its contents are the output files generated by the executable. They are:

2001061100.gs4r

2001061103.gs4r

2001061106.gs4r

2001061109.gs4r

2001061112.gs4r

2001061115.gs4r

2001061118.gs4r

2001061121.gs4r

Note, each file-name contains a date-stamp marking the year, month, day,
and hour that the data corresponds to. The output data files for CLM and VIC
are similar.

The generated output can be written in a 2-D grid format or as a 1-d vector.
See Appendix A for more details. If written as a 1-d vector, the output must
be converted into a 2-d grid before it can be visualized. The postproc.tar.gz

35

contains 1-d to 2-d mapping files that GrADS can use for this purpose. 3 See
Section 5.4.

In this example, for 2-D output, simply copy the noah.25.ctl and noah.25.gs
files into the $WORKING/LIS/OUTPUT/EXP999/NOAH/2001/20010611 di-
rectory. Then run GrADS:

% grads -blc "run noah.25.gs"

This will create data-plots of all the variables in 2001061121.gs4r.
For 1-D output, you must edit the noah.25.ctl data descriptor file. Simply

uncomment (remove the asterisk) the “PDEF” line. Then run GrADS as above.

3These mappings only work for “global” runs. If your simulation was over a sub-setted
domain, you must either create your own pdef mapping file or simply write 2-d output.

36

9.1 CLM Output

This table lists the variables written by CLM. The output variables are writ-
ten to conform to the standards specified by the Assistance for Land-surface
Modelling activities (ALMA). See ALMA’s web-site [3] for futher details.

ALMA Mandatory Output

Number Variable Description Units

1 SWnet Net Shortwave Radiation W/m2

2 LWnet Net Longwave Radiation W/m2

3 Qle Latent Heat Flux W/m2

4 Qh Sensible Heat Flux W/m2

5 Qg Ground Heat Flux W/m2

6 Snowf Snowfall rate kg/m2/s

7 Rainf Rainfall rate kg/m2/s

8 Evap Total Evapotranspiration kg/m2/s

9 Qs Surface Runoff kg/m2/s

10 Qsb Subsurface Runoff kg/m2/s

11 Qsm Snowmelt kg/m2/s

12 DelSoilMoist Change in soil moisture kg/m2

13 DelSWE Change in snow water equivalent kg/m2

14 SnowT Snow Temperature K

15 VegT Vegetation Canopy Temperature K

16 BaresoilT Temperature of bare soil K

17 AvgSurfT Average Surface Temperature K

18 RadT Surface Radiative Temperature K

19 Albedo Surface Albedo, All Wavelengths -

20 SWE Snow Water Equivalent kg/m2

21 SoilTemp1 Average layer 1 soil temperature K

22 SoilTemp2 Average layer 2 soil temperature K

23 SoilTemp3 Average layer 3 soil temperature K

24 SoilTemp4 Average layer 4 soil temperature K

25 SoilTemp5 Average layer 5 soil temperature K

37

26 SoilTemp6 Average layer 6 soil temperature K

27 SoilTemp7 Average layer 7 soil temperature K

28 SoilTemp8 Average layer 8 soil temperature K

29 SoilTemp9 Average layer 9 soil temperature K

30 SoilTemp10 Average layer 10 soil temperature K

31 SoilMoist1 Average layer 1 soil moisture kg/m2

32 SoilMoist2 Average layer 2 soil moisture kg/m2

33 SoilMoist3 Average layer 3 soil moisture kg/m2

34 SoilMoist4 Average layer 4 soil moisture kg/m2

35 SoilMoist5 Average layer 5 soil moisture kg/m2

36 SoilMoist6 Average layer 6 soil moisture kg/m2

37 SoilMoist7 Average layer 7 soil moisture kg/m2

38 SoilMoist8 Average layer 8 soil moisture kg/m2

39 SoilMoist9 Average layer 9 soil moisture kg/m2

40 SoilMoist10 Average layer 10 soil moisture kg/m2

41 SoilWet Total Soil Wetness -

42 TVeg Vegetation transpiration kg/m2/s

43 ESoil Bare soil evaporation kg/m2/s

44 RootMoist Root zone soil moisture kg/m2

45 ACond Aerodynamic conductance m/s

ALMA Optional Forcing Output

Number Variable Description Units

46 Wind Near surface wind magnitude m/s

47 Rainf Rainfall rate kg/m2/s

48 Snowf Snowfall rate kg/m2/s

49 Tair Near surface air temperature K

50 Qair Near surface specific humidity kg/kg

51 PSurf Surface pressure Pa

52 SWdown Surface incident shortwave radiation W/m2

53 LWdown Surface incident longwave radiation W/m2

38

9.2 Noah Output

This table lists the variables written by Noah. The output variables are writ-
ten to conform to the standards specified by the Assistance for Land-surface
Modelling activities (ALMA). See ALMA’s web-site [3] for futher details.

ALMA Mandatory Output

39

Number Variable Description Units

1 SWnet Net Shortwave Radiation W/m2

2 LWnet Net Longwave Radiation W/m2

3 Qle Latent Heat Flux W/m2

4 Qh Sensible Heat Flux W/m2

5 Qg Ground Heat Flux W/m2

6 Snowf Snowfall rate kg/m2/s

7 Rainf Rainfall rate kg/m2/s

8 Evap Total Evapotranspiration kg/m2/s

9 Qs Surface Runoff kg/m2/s

10 Qsb Subsurface Runoff kg/m2/s

11 Qsm Snowmelt kg/m2/s

12 DelSoilMoist Change in soil moisture kg/m2

13 DelSWE Change in snow water equivalent kg/m2

14 AvgSurfT Average Surface Temperature K

15 Albedo Surface Albedo, All Wavelengths -

16 SWE Snow Water Equivalent kg/m2

17 SoilTemp1 Average layer 1 soil temperature K

18 SoilTemp2 Average layer 2 soil temperature K

19 SoilTemp3 Average layer 3 soil temperature K

20 SoilTemp4 Average layer 4 soil temperature K

21 SoilMoist1 Average layer 1 soil moisture kg/m2

22 SoilMoist2 Average layer 2 soil moisture kg/m2

23 SoilMoist3 Average layer 3 soil moisture kg/m2

24 SoilMoist4 Average layer 4 soil moisture kg/m2

25 SoilWet Total Soil Wetness -

26 TVeg Vegetation transpiration kg/m2/s

27 ESoil Bare soil evaporation kg/m2/s

28 RootMoist Root zone soil moisture kg/m2

40

ALMA Optional Forcing Output

Number Variable Description Units

29 Wind Near surface wind magnitude m/s

30 Rainf Rainfall rate kg/m2/s

31 Snowf Snowfall rate kg/m2/s

32 Tair Near surface air temperature K

33 Qair Near surface specific humidity kg/kg

34 PSurf Surface pressure Pa

35 SWdown Surface incident shortwave radiation W/m2

36 LWdown Surface incident longwave radiation W/m2

41

9.3 VIC Output

This table lists the variables written by VIC. The output variables are written to
conform to the standards specified by the Assistance for Land-surface Modelling
activities (ALMA). See ALMA’s web-site [3] for futher details.

ALMA Mandatory Output

Number Variable Description Units

1 SWnet Net Shortwave Radiation W/m2

2 LWnet Net Longwave Radiation W/m2

3 Qle Latent Heat Flux W/m2

4 Qh Sensible Heat Flux W/m2

5 Qg Ground Heat Flux W/m2

6 Rainf Rainfall rate kg/m2/s

7 Snowf Snowfall rate kg/m2/s

8 Evap Total Evapotranspiration kg/m2/s

9 Qs Surface Runoff kg/m2/s

10 Qsb Subsurface Runoff kg/m2/s

11 Qfz Re-freezing of water in the snow kg/m2/s

12 SnowT Snow Temperature K

13 AvgSurfT Average Surface Temperature K

14 RadT Surface Radiative Temperature K

15 Albedo Surface Albedo, All Wavelengths -

16 SoilTemp1 Average layer 1 soil temperature K

17 SoilTemp2 Average layer 2 soil temperature K

18 SoilTemp3 Average layer 3 soil temperature K

19 SoilMoist1 Average layer 1 soil moisture kg/m2

20 SoilMoist2 Average layer 2 soil moisture kg/m2

21 SoilMoist3 Average layer 3 soil moisture kg/m2

22 TVeg Vegetation transpiration kg/m2/s

23 ESoil Bare soil evaporation kg/m2/s

24 SoilWet Total Soil Wetness -

25 RootMoist Root zone soil moisture kg/m2

42

26 SWE Snow Water Equivalent kg/m2

27 Qsm Snowmelt kg/m2/s

28 DelSoilMoist Change in soil moisture kg/m2

29 DelSWE Change in snow water equivalent kg/m2

30 ACond Aerodynamic conductance m/s

ALMA Optional Forcing Output

Number Variable Description Units

31 Wind Near surface wind magnitude m/s

32 Rainf Rainfall rate kg/m2/s

33 Snowf Snowfall rate kg/m2/s

34 Tair Near surface air temperature K

35 Qair Near surface specific humidity kg/kg

36 PSurf Surface pressure Pa

37 SWdown Surface incident shortwave radiation W/m2

38 LWdown Surface incident longwave radiation W/m2

43

A LIS Configuration File

This is a sample LIS configuration file. This configuration file configures LIS to
run the Noah land surface model at 1/4 degree resolution using GEOS forcing
data. The run starts at 21 hours 10 June 2001 and ends at 21 hours 11 June 2001.
It will compute over the region given by the box (−97.75, 27.75), (−92.75, 32.0)
degrees longitude/latitude.

#overall config options
#Domain resolution (5=1/4deg,6=5km,8=1km)
#Land Surface Model (1=Noah,2=CLM,3=VIC,4=Mosaic,5=HySSIB,6=SSIB)
#Base Forcing scheme (1=GDAS,2=GEOS,3=ECMWF,4=NLDAS,5=GSWP,6=BERG)
#Soil scheme (1=FAO,2=STATSGO)
#LAI scheme (1=AVHRR,2=MODIS)

Domain Resolution: 5
lsm: 1
forcing: 2
soil: 2
lai: 2

#Run control options
#Experiment code (3 digit number)
#Vegetation classification (1=UMD)

Experiment code: 999
Vegetation classification: 1
Number of landcover types: 13
Number of forcing variables: 10

#Use elevation correction (1=yes, 0=No)
#Interpolation Scheme (1=bilinear, 2=bilinear+conservative)

Use elevation correction: 1
Type of interpolation: 1

#Output forcing (1=yes,0=no)
#Write bundled output (1=yes,0=no)
#Write parameter output (1=yes,0=no)
#Write vector output (1=yes,0=no)
#Start mode (1=restart, 2=coldstart)

Write Output: 1
Output forcing: 1
Write bundled output: 1
Write parameter output: 0

44

Write vector output: 0
Start mode: 2
End mode: 1

#Time Specifications

sss: 0
smn: 0
shr: 21
sda: 10
smo: 6
syr: 2001

ess: 0
emn: 00
ehr: 21
eda: 11
emo: 6
eyr: 2001

#Timestep

ts: 1800
udef: -9999
odir: "OUTPUT"
dfile: "lisdiag"
Obs precip forcing: 0
Obs radiation forcing: 0
maxt: 1
mina: 0.05

#Domain

$(-97.75,27.75)$, $(-92.75,32.0)$ degrees longitude/latitude.
Grid Projection: 0
Run Lat (LL): 27.875
Run Lon (LL): -97.625
Run Lat (UR): 31.875
Run Lon (UR): -92.875
Run deltax: 0.25
Run deltay: 0.25

Param Lat (LL): -59.875
Param Lon (LL): -179.875
Param Lat (UR): 89.875
Param Lon (UR): 179.875

45

Param deltax: 0.25
Param deltay: 0.25

#Common parameters
land mask map: "GVEG/UMD_60mask.bfsa"
veg classification map: "GVEG/UMD_60veg.bfsa"
sand fraction map: "BCS/1_4deg/sand60.bfsa"
clay fraction map: "BCS/1_4deg/clay60.bfsa"
soil color fraction map: "BCS/1_4deg/soicol60.bfsa"
elevation correction map:"GVEG/1_4deg/geos3_diff.1gd4r"
AVHRR LAI map location: "input/AVHRR_LAI"
MODIS LAI map location: "input/MODIS_LAI"

#Forcing specifications
#GDAS forcing (forcing=1)

GDAS forcing directory: "input/FORCING/GDAS"
GDAS Number of rows: 256
GDAS Number of columns: 512
GDAS Number of variables: 13

#GEOS forcing (forcing=2)

GEOS forcing directory: "inputFORCING/GEOS/BEST_LK"
GEOS Number of rows: 181
GEOS Number of columns: 360
GEOS Number of variables: 13

#Land Surface Model specifications
#Noah
Noah output frequency (hrs): 3
Noah restart file: "noah.rst"
Noah greeness fraction directory:"BCS/1_4deg/NOAH/"
Noah quarterly albedo directory: "BCS/1_4deg/NOAH/"
Noah vegetation parameters: "BCS/noah_parms/noah.vegparms.txt"
Noah soil parameters: "BCS/noah_parms/noah.soilparms.txt"
Noah max snow free albedo map: "BCS/1_4deg/NOAH/maxsnalb.bfsa"
Noah bottom temperature map: "BCS/1_4deg/NOAH/tbot.bfsa"
Noah initial soil moisture (% vol.): 0.30
Noah initial soil temperature (K): 290.0
Noah number of veg parameters: 7
Noah number of soil parameters: 10

#CLM2
CLM2 output frequency (hrs): 3
CLM2 restart file: "clm2.rst"

46

CLM2 vegetation parameters: "BCS/clm_parms/umdvegparam.txt"
CLM2 canopy height parameters: "BCS/clm_parms/clm2_ptcanhts.txt"
CLM2 initial soil moisture (% vol.): 0.45
CLM2 initial soil temperature (K): 290.0
CLM2 initial snow mass (mm H20): 0.

#VIC
VIC output frequency (hrs): 3
VIC Number of Soil Layers: 3
VIC Number of thermal nodes: 5
VIC Number of snowbands: 1
VIC Number of rootzones: 2
VIC soil lookup table: "BCS/vic_parms/soil.txt"
VIC veg lookup table: "BCS/vic_parms/veg_lib.txt"
VIC restart file: "restart.dat"
VIC Ds file: "BCS/1_4deg/VIC/ds.1gd4r"
VIC Dsmax file: "BCS/1_4deg/VIC/dsmax.1gd4r"
VIC Ws file: "BCS/1_4deg/VIC/ws.1gd4r"
VIC Infilt file: "BCS/1_4deg/VIC/infilt.1gd4r"
VIC depth1 file: "BCS/1_4deg/VIC/depth1.1gd4r"
VIC depth2 file: "BCS/1_4deg/VIC/depth2.1gd4r"
VIC depth3 file: "BCS/1_4deg/VIC/depth3.1gd4r"

OPENDAP data prefix: /home/lis

47

B Makefile

Set up special characters
null :=
space := $(null) $(null)
doctool :=../../utils/docsgen.sh

Check for directory in which to put executable
ifeq ($(MODEL_EXEDIR),$(null))
MODEL_EXEDIR := .
endif

Check for name of executable
ifeq ($(EXENAME),$(null))
EXENAME := LIS
endif

Check if SPMD is defined in "misc.h"
Ensure that it is defined and not just "undef SPMD" set in file
ifeq ($(SPMD),$(null))
SPMDSET := $(shell /bin/grep SPMD misc.h)
ifneq (,$(findstring define,$(SPMDSET)))
SPMD := TRUE

else
SPMD := FALSE

endif
endif

Determine platform
UNAMES := $(shell uname -s)
UMACHINE := $(shell uname -m)

ifeq ($(UNAMES),IRIX64)
ESMF_DIR := ../lib/esmf
LIB_ESMF := $(ESMF_DIR)/lib/libO
MOD_ESMF := $(ESMF_DIR)/mod/modO

endif

ifeq ($(UNAMES),OSF1)

LIB_MPI := /usr/lib
INC_MPI := /usr/include
ESMF_DIR := ../lib/esmf
LIB_ESMF := $(ESMF_DIR)/lib/libO
MOD_ESMF := $(ESMF_DIR)/mod/modO

48

endif

ifeq ($(UMACHINE), i686)

INC_NETCDF := /your/installation/goes/here
LIB_NETCDF := /your/installation/goes/here
MPI_PREFIX := /your/installation/goes/here
LIB_MPI := $(MPI_PREFIX)/lib
INC_MPI := $(MPI_PREFIX)/include
ESMF_DIR := ../lib/esmf
LIB_ESMF := $(ESMF_DIR)/lib/libO
MOD_ESMF := $(ESMF_DIR)/mod/modO

endif

Load dependency search path.
dirs := . $(shell cat Filepath)
Set cpp search path, include netcdf
cpp_dirs := $(dirs) $(INC_NETCDF) $(INC_MPI)
cpp_path := $(foreach dir,$(cpp_dirs),-I$(dir)) # format for command line

Expand any tildes in directory names. Change spaces to colons.
VPATH := $(foreach dir,$(cpp_dirs),$(wildcard $(dir)))
VPATH := $(subst $(space),:,$(VPATH))

#--
Primary target: build the model
#--
all: $(MODEL_EXEDIR)/$(EXENAME)

Get list of files and determine objects and dependency files
FIND_FILES = $(wildcard $(dir)/*.F $(dir)/*.f $(dir)/*.F90 $(dir)/*.c)
FILES = $(foreach dir, $(dirs),$(FIND_FILES))
SOURCES := $(sort $(notdir $(FILES)))
DEPS := $(addsuffix .d, $(basename $(SOURCES)))
OBJS := $(addsuffix .o, $(basename $(SOURCES)))
DOCS := $(addsuffix .tex, $(basename $(SOURCES)))

$(MODEL_EXEDIR)/$(EXENAME): $(OBJS)
$(FC) -o $@ $(OBJS) $(FOPTS) $(LDFLAGS)
debug: $(OBJS)

echo "FFLAGS: $(FFLAGS)"
echo "LDFLAGS: $(LDFLAGS)"
echo "OBJS: $(OBJS)"

49

#***
#********** Architecture-specific flags and rules***********************
#***

#--
SGI
#--

ifeq ($(UNAMES),IRIX64)

ESMF_ARCH = IRIX64
FC := f90
CPP := /lib/cpp

Library directories
LIB_DIR = ../lib/sgi-64/
HDFLIBDIR = $(LIB_DIR)
GFIOLIBDIR = $(LIB_DIR)
CPPFLAGS := -P
PSASINC :=
CFLAGS := $(cpp_path) -64 -c -O2 -OPT:Olimit=0 -static -DIRIX64
#CFLAGS := $(cpp_path) -64 -c -O2 -OPT:Olimit=0 -static -DIRIX64 -DOPENDAP
#CFLAGS := $(cpp_path) -64 -c -g -static -DIRIX64
FFLAGS = $(cpp_path) -64 -r4 -i4 -c -cpp -I$(MOD_ESMF)/$(ESMF_ARCH) \

-DHIDE_SHR_MSG -DNO_SHR_VMATH -DIRIX64 -O2 -OPT:Olimit=0 -static
#FFLAGS = $(cpp_path) -64 -r4 -i4 -c -cpp -I$(MOD_ESMF)/$(ESMF_ARCH) \

-DHIDE_SHR_MSG -DNO_SHR_VMATH -DIRIX64 -O2 -OPT:Olimit=0 \
-static -DOPENDAP

#FFLAGS = $(cpp_path) -64 -r4 -i4 -c -cpp -I$(MOD_ESMF)/$(ESMF_ARCH) \
-DHIDE_SHR_MSG -DNO_SHR_VMATH -DIRIX64 -g -static

#FFLAGS = $(cpp_path) -64 -r4 -i4 -c -cpp -I$(MOD_ESMF)/$(ESMF_ARCH) \
-DHIDE_SHR_MSG -DNO_SHR_VMATH -DIRIX64 -cif -g -static

FOPTS = $(LIB_DIR)bacio_64_sgi $(LIB_DIR)w3lib_64_sgi
#LDFLAGS = -L$(LIB_NETCDF) -lnetcdf -L$(LIB_ESMF)/$(ESMF_ARCH) \

-loldworld -lmpi
#LDFLAGS = -L$(LIB_ESMF)/$(ESMF_ARCH) -loldworld -lmpi
LDFLAGS = -64 -L$(LIB_ESMF)/$(ESMF_ARCH) -lesmf -lmpi
WARNING: -mp and -g together cause wrong answers

WARNING: - Don’t run hybrid on SGI (that’s what the -= -mp is all about)

ifeq ($(SPMD),TRUE)
FFLAGS -= -mp
FFLAGS += -macro_expand

FFLAGS += -I$(INC_MPI) -macro_expand

50

LDFLAGS += -L$(LIB_MPI) -lmpi
else
FFLAGS += -DHIDE_MPI

endif

.SUFFIXES:

.SUFFIXES: .F90 .c .o

.F90.o:
$(FC) $(FFLAGS) $<
.c.o:
cc $(cpp_path) $(CFLAGS) $<

endif
#---
Compaq alpha - Halem cluster
#---
ifeq ($(UNAMES),OSF1)

ESMF_ARCH = alpha
FC := f90
CPP := /lib/cpp

Library directories
LIB_DIR = ../lib/alpha-32/
CPPFLAGS := -P
PSASINC :=
CFLAGS := $(cpp_path) -n32 -DOSF1
FFLAGS = $(cpp_path) -c -cpp -automatic -convert big_endian \

-assume byterecl -arch ev6 -tune ev6 -fpe3 \
-I$(MOD_ESMF)/$(ESMF_ARCH) -DOSF1 \
-DHIDE_SHR_MSG -DNO_SHR_VMATH

FFLAGS_DOTF90 = -DHIDE_SHR_MSG -DOSF1 -free -fpe3 -DNO_SHR_VMATH
FFLAGS_DOTF = -extend_source -omp -automatic
FOPTS = $(LIB_DIR)bacio_32_alpha $(LIB_DIR)w3lib_32_alpha
LDFLAGS = -L$(LIB_ESMF)/$(ESMF_ARCH) -lesmf -lmpi
WARNING: -mp and -g together cause wrong answers

WARNING: - Don’t run hybrid on SGI (that’s what the -= -mp is all about)

ifeq ($(SPMD),TRUE)
FFLAGS -= -mp
FFLAGS += -I$(INC_MPI) -macro_expand

LDFLAGS += -L$(LIB_MPI) -lmpi

51

else
FFLAGS += -DHIDE_MPI

endif

.SUFFIXES:

.SUFFIXES: .f .f90 .F90 .c .o

.f.o:
$(FC) $(FFLAGS) $<
.F90.o:
$(FC) $(FFLAGS) $<
.c.o:
cc -c $(cpp_path) $(CFLAGS) $<
.f90.o:
$(FC) $(FFLAGS) $<

endif
#--
Linux
#--

ifeq ($(UMACHINE),i686)
ESMF_ARCH = linux_absoft

ifeq ($(ESMF_ARCH),linux_ifc)

FC := $(MPI_PREFIX)/bin/mpif90
CPP := /lib/cpp

CFLAGS := $(cpp_path) -c -O2
FFLAGS = $(cpp_path) -c -I$(MOD_ESMF)/$(ESMF_ARCH) -DHIDE_SHR_MSG \

-DNO_SHR_VMATH -O
LDFLAGS = -L$(LIB_ESMF)/$(ESMF_ARCH) -lesmf -lmpich

endif

ifeq ($(ESMF_ARCH),linux_absoft)

FC := $(MPI_PREFIX)/bin/mpif90
CC := $(MPI_PREFIX)/bin/mpicc
CPP := /lib/cpp

Non opendap
CFLAGS := $(cpp_path) -c -O2 -DABSOFT -DLITTLE_ENDIAN
FFLAGS := $(cpp_path) -c -O2 -YEXT_NAMES=LCS -s -B108 -YCFRL=1 \

52

-YDEALLOC=ALL -p$(MOD_ESMF)/$(ESMF_ARCH) -DHIDE_SHR_MSG \
-DNO_SHR_VMATH -DABSOFT -DLITTLE_ENDIAN

opendap
#CFLAGS := $(cpp_path) -c -O2 -DABSOFT -DLITTLE_ENDIAN -DOPENDAP
#FFLAGS := $(cpp_path) -c -O2 -YEXT_NAMES=LCS -s -B108 -YCFRL=1 \

-YDEALLOC=ALL -p$(MOD_ESMF)/$(ESMF_ARCH) -DHIDE_SHR_MSG \
-DNO_SHR_VMATH -DABSOFT -DLITTLE_ENDIAN -DOPENDAP

debugging with opendap
#CFLAGS := $(cpp_path) -c -g -DABSOFT -DLITTLE_ENDIAN -DOPENDAP
#FFLAGS := $(cpp_path) -c -O1 -g -Rb -Rc -Rs -Rp -YEXT_NAMES=LCS -s -B108 \

-YCFRL=1 -YDEALLOC=ALL -p$(MOD_ESMF)/$(ESMF_ARCH) \
-DHIDE_SHR_MSG -DNO_SHR_VMATH -DABSOFT -DLITTLE_ENDIAN -DOPENDAP

debugging
#CFLAGS := $(cpp_path) -c -g -DABSOFT -DLITTLE_ENDIAN
#FFLAGS := $(cpp_path) -c -O1 -g -Rb -Rc -Rs -Rp -YEXT_NAMES=LCS -s -B108 \

-YCFRL=1 -YDEALLOC=ALL -p$(MOD_ESMF)/$(ESMF_ARCH) \
-DHIDE_SHR_MSG -DNO_SHR_VMATH -DABSOFT -DLITTLE_ENDIAN

profiling -- don’t forget the -P in LDFLAGS
#CFLAGS := $(cpp_path) -c -O2 -DABSOFT -DLITTLE_ENDIAN -DOPENDAP -pg
#FFLAGS := $(cpp_path) -c -O2 -YEXT_NAMES=LCS -s -B108 -YCFRL=1 \

-YDEALLOC=ALL -p$(MOD_ESMF)/$(ESMF_ARCH) -DHIDE_SHR_MSG \
-DNO_SHR_VMATH -DABSOFT -DLITTLE_ENDIAN -DOPENDAP -P

LDFLAGS := -L$(LIB_ESMF)/$(ESMF_ARCH) -L$(LIB_NETCDF) -lnetcdf -lesmf \
-lmpich -lU77 -lm

endif

ifeq ($(ESMF_ARCH),linux_lf95)

FC := $(MPI_PREFIX)/bin/mpif90
CPP := /lib/cpp
CFLAGS := $(cpp_path) -c -O -DUSE_GCC -DLAHEY -DLITTLE_ENDIAN
FFLAGS := $(cpp_path) -c -O -DHIDE_SHR_MSG -DLINUX -DNO_SHR_VMATH \

-I$(MOD_ESMF)/$(ESMF_ARCH) -DLAHEY -DLITTLE_ENDIAN
LDFLAGS := -L$(LIB_ESMF)/$(ESMF_ARCH) -lesmf -L$(LIB_MPI) -lmpich -s \

--staticlink

endif

Library directories

53

LIB_DIR = ../lib/pc-32/$(ESMF_ARCH)/
HDFLIBDIR = $(LIB_DIR)
GFIOLIBDIR = $(LIB_DIR)
CPPFLAGS := -P
PSASINC :=
FOPTS = $(LIB_DIR)bacio_32_pclinux $(LIB_DIR)w3lib_32_pclinux
WARNING: -mp and -g together cause wrong answers

WARNING: - Don’t run hybrid on SGI (that’s what the -= -mp is all about)

ifeq ($(SPMD),TRUE)
FFLAGS -= -mp
FFLAGS += -macro_expand
FFLAGS += -I$(INC_MPI) -macro_expand

LDFLAGS += -L$(LIB_MPI) -lmpi
else
FFLAGS += -DHIDE_MPI

endif

.SUFFIXES:

.SUFFIXES: .F90 .c .o

.F90.o:
$(FC) $(FFLAGS) $<
.c.o:
$(CC) $(cpp_path) $(CFLAGS) $<

endif

RM := rm
Add user defined compiler flags if set, and replace FC if USER option set.
FFLAGS += $(USER_FFLAGS)
ifneq ($(USER_FC),$(null))
FC := $(USER_FC)
endif

clean:
$(RM) -f *.o *.mod *.stb $(MODEL_EXEDIR)/$(EXENAME)

realclean:
$(RM) -f *.o *.d *.mod *.stb $(MODEL_EXEDIR)/$(EXENAME)
doc:
$(doctool)
#--
#!!!!!!!!!!!!!!!!DO NOT EDIT BELOW THIS LINE.!!!!!!!!!!!!!!!!!!!!!!!!!!!!

54

#--
These rules cause a dependency file to be generated for each source
file. It is assumed that the tool "makdep" (provided with this
distribution in clm2/tools/makdep) has been built and is available in
the user’s $PATH. Files contained in the clm2 distribution are the
only files which are considered in generating each dependency. The
following filters are applied to exclude any files which are not in
the distribution (e.g. system header files like stdio.h).
#
1) Remove full paths from dependencies. This means gnumake will not break
if new versions of files are created in the directory hierarchy
specified by VPATH.
#
2) Because of 1) above, remove any file dependencies for files not in the
clm2 source distribution.
#
Finally, add the dependency file as a target of the dependency rules. This
is done so that the dependency file will automatically be regenerated
when necessary.
#
i.e. change rule
make.o : make.c make.h
to:
make.o make.d : make.c make.h
#--
DEPGEN := ./MAKDEP/makdep -s F
%.d : %.c
@echo "Building dependency file $@"
@$(DEPGEN) -f $(cpp_path) $< > $@
%.d : %.f
@echo "Building dependency file $@"
@$(DEPGEN) -f $(cpp_path) $< > $@
%.d : %.F90
@echo "Building dependency file $@"
@$(DEPGEN) -f $(cpp_path) $< > $@
%.d : %.F
@echo "Building dependency file $@"
@$(DEPGEN) -f $(cpp_path) $< > $@
#
if goal is clean or realclean then don’t include .d files
without this is a hack, missing dependency files will be created
and then deleted as part of the cleaning process
#
INCLUDE_DEPS=TRUE
ifeq ($(MAKECMDGOALS), realclean)
INCLUDE_DEPS=FALSE

55

endif
ifeq ($(MAKECMDGOALS), clean)
INCLUDE_DEPS=FALSE
endif

ifeq ($(INCLUDE_DEPS), TRUE)
-include $(DEPS)
endif

56

References

[1] GrADS. http://grads.iges.org/grads/grads.html.

[2] Protex documenting system. http://gmao.gsfc.nasa.gov/software/protex.

[3] ALMA. http://www.lmd.jussieu.fr/ALMA/.

[4] CLM. http://www.cgd.ucar.edu/tss/clm.

[5] DODS. http://www.unidata.ucar.edu/packages/dods/.

[6] Noah. ftp://ftp.ncep.noaa.gov/pub/gcp/ldas/noahlsm/.

[7] VIC. http://hydrology.princeton.edu/research/lis/index.html.

[8] W3FI63 program. http://dss.ucar.edu/datasets/ds609.1/software/mords/w3fi63.f.

[9] G. J. Collatz, C Grivet, J. T. Ball, and J. A. Berry. Physiological and
environmental regulation of stomatal conducatance: Photosynthesis and
transpiration: A model that includes a laminar boundary layer. Agric.
For. Meteorol., 5:107–136, 1991.

[10] Chen. F., Mitchell. K., Schaake. J, Xue. J, Pan. H, Koren. V., Ek. M Duan,
and A. Betts. Modeling of land-surface evaporation by four schemes and
comparison with fife observations. J. Geophys. Res., 101(D3):7251–7268,
1996.

[11] P. G. Jarvis. The interpretation of leaf water potential and stomatal con-
ductance found in canopies of the field. Phil. Trans. R. Soc., 273:593–610,
1976.

[12] L. A. Richards. Capillary conduction of liquids in porous media. Physics,
1:318–333, 1931.

[13] E. Rogers, T. L. Black, D. G. Deaven, G. J. DiMego, Q. Zhao, M. Baldwin,
N. W. Junker, and Y. Lin. Changes to the operational “early” eta anal-
ysis/forecast system at the national centers of environmental prediction.
Wea. Forecasting, 11:391–413, 1996.

57

	Introduction
	What's New: LIS 3.0 -- LIS-ESMF
	What's New: LIS 2.0 -- 3.0

	Background
	LIS
	LIS driver
	Community Land Model (CLM)
	The Community Noah Land Surface Model
	Variable Infiltration Capacity (VIC) Model
	GrADS-DODS Server

	Preliminaries
	Running Modes
	MPI-Based Running Mode
	GDS-Based Running Mode
	Non-parallel Running Mode
	1 km Global Runs

	Obtaining the Source Code
	Downloading the Source Code
	Source files
	Scripts
	Post-processing
	Opendap Scripts

	Obtaining the Data-sets
	Downloading the Data-sets
	Downloading Parameter Data-sets
	Example: Downloading the 1/4 Deg. Parameter Data-sets via http
	Example: Downloading the 1/4 Deg. Parameter Data-sets via GDS

	Downloading the Forcing Data-sets
	Example: Downloading the 1/4 Deg. Forcing Data-sets via http

	Downloading the Sample Output Data-sets
	Example: Downloading The Sample 1/4 Deg. Output Data-sets Via GDS
	Viewing The Sample 1/4 Deg. Output Data-sets

	Building the Executable
	General Build Instructions
	Required Software Libraries
	Modifying the Makefile

	Compiling non-parallel running mode
	Compiling GrADS-DODS Support
	Generating documentation

	Running The Executable
	Configuring Run Via LIS Configuration File
	Domain Example
	Running Over The 1 km Domain

	Output Data Processing
	CLM Output
	Noah Output
	VIC Output

	LIS Configuration File
	Makefile

